1 Fig. 4 shows the curve $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=a+\cos b x, 0 \leqslant x \leqslant 2 \pi,
$$

and a and b are positive constants. The curve has stationary points at $(0,3)$ and $(2 \pi, 1)$.

Fig. 4
(i) Find a and b.
(ii) Find $\mathrm{f}^{-1}(x)$, and state its domain and range.

2 Fig. 9 shows the line $y=x$ and the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{2}\left(\mathrm{e}^{x}-1\right)$. The line and the curve intersect at the origin and at the point $\mathrm{P}(a, a)$.

Fig. 9
(i) Show that $\mathrm{e}^{a}=1+2 a$.
(ii) Show that the area of the region enclosed by the curve, the x-axis and the line $x=a$ is $\frac{1}{2} a$. Hence find, in terms of a, the area enclosed by the curve and the line $y=x$.
(iii) Show that the inverse function of $\mathrm{f}(x)$ is $\mathrm{g}(x)$, where $\mathrm{g}(x)=\ln (1+2 x)$. Add a sketch of $y=\mathrm{g}(x)$ to the copy of Fig. 9.
(iv) Find the derivatives of $\mathrm{f}(x)$ and $\mathrm{g}(x)$. Hence verify that $\mathrm{g}^{\prime}(a)=\frac{1}{\mathrm{f}^{\prime}(a)}$.

Give a geometrical interpretation of this result.

3 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=1-2 \sin x$ for $-\frac{1}{2} \pi \leqslant x \leqslant \frac{1}{2} \pi$. Fig. 3 shows the curve $y=\mathrm{f}(x)$.

Fig. 3
(i) Write down the range of the function $\mathrm{f}(x)$.
(ii) Find the inverse function $\mathrm{f}^{-1}(x)$.
(iii) Find $\mathrm{f}^{\prime}(0)$. Hence write down the gradient of $y=\mathrm{f}^{-1}(x)$ at the point $(1,0)$.

4 Fig. 6 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=2 \arcsin x,-1 \approx \leqslant 1$.
Fig. 6 also shows the curve $y=\mathrm{g}(x)$, where $\mathrm{g}(x)$ is the inverse function of $\mathrm{f}(x)$.
P is the point on the curve $y=\mathrm{f}(x)$ with x-coordinate $\frac{1}{2}$.

Fig. 6
(i) Find the y-coordinate of P , giving your answer in terms of π.

The point Q is the reflection of P in $y=x$.
(ii) Find $\mathrm{g}(x)$ and its derivative $\mathrm{g}^{\prime}(x)$. Hence determine the exact gradient of the curve $y=\mathrm{g}(x)$ at the point Q .

Write down the exact gradient of $y=\mathrm{f}(x)$ at the point P .

5 Fig. 9 shows the curve $y=\mathrm{f}(x)$. The endpoints of the curve are $\mathrm{P}(-\pi, 1)$ and $\mathrm{Q}(\pi, 3)$, and $\mathrm{f}(x)=a+\sin b x$, where a and b are constants.

Fig. 9
(i) Using Fig. 9, show that $a=2$ and $b=\frac{1}{2}$.
(ii) Find the gradient of the curve $y=\mathrm{f}(x)$ at the point $(0,2)$.

Show that there is no point on the curve at which the gradient is greater than this.
(iii) Find $\mathrm{f}^{-1}(x)$, and state its domain and range.

Write down the gradient of $y=\mathrm{f}^{-1}(x)$ at the point $(2,0)$.
(iv) Find the area enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=\pi$.

